
The Gaussian Smoothed Distribution curve function 
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Which simplifies to 
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Where: 

• 𝑑1, 𝑑2, 𝑑3, … 𝑑𝑛 are the data values of your single-variable sample 

• 𝑛 is the number of data values in your sample 

• 𝑠 is a smoothing parameter.  A good starting value is 
max(𝑑)−min (𝑑)

25
 ie the range of data 

values divided by 25.  Depending on needs this value can be adjusted. 

• 𝑎 is an amplifying parameter. 

A good starting value is 0.3 ×  (𝑥 − 𝑎𝑥𝑖𝑠 𝑟𝑎𝑛𝑔𝑒) × (𝑦 − 𝑎𝑥𝑖𝑠 𝑟𝑎𝑛𝑔𝑒). This results in the 

area beneath the curve taking up 30% of the graph paper 
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Note that each term of the top ∑   sum is almost identical to the probability density function of a 

Normal distribution φ(x) but with 𝑑𝑖  instead of μ and 𝑠 instead of σ.  So the function sums lots of 

individual little bell (normal distribution) curves at each data point. As the σ of these bell curves is 

increased, the bell curves merge into each other creating a ‘smoothing’ effect, which the function 

effects by increasing 𝑠.  Whatever the value of 𝑠 (ie σ), the area under each mini bell curve is 1, so 

when added all together the total area remains a constant 𝑛. 

With a computer, the above function is very easily programmed with a simple ‘loop’ as part of the 

function: 

s=(max(d)-min(d))/25 

a=0.3*(max(d)-min(d))*yaxisheight 

for (x=min(d) to max(d)) 

    y=0 

    for (i=1 to n) 

        y = y+exp(-0.5*(x-di)*(x-di)/(s*s)) 

    y=y*a/(n*s*sqrt(2*PI)) 

    plot (x,y) 

In practice, extending the x-axis a little beyond the minimum and maximum data values is good and 

allowing s and a to be varied easily (eg with a ‘slider’ control) in a dynamic fashion enables further 

insight into the distribution and an optimum view for the data concerned. 

Plotting the curve also lends itself to showing more than one data-set on the same graph. Indeed, it 

gives a good visual way to compare different distributions even of different sizes (n). 

Other sources have suggested precise statistical methods for obtaining an optimal value of s, but my 

personal experience shows the simplified version above gives a good starting point and I like to then 

vary it dynamically before selecting a compromise between smoothness and detail.  The other 

sources seen also use the sample standard deviation which feels uncomfortable for samples from a 

non-normal, possibly bi-modal skewed distribution. 


